

Demystifying Wi-Fi

What is Wi-Fi?

- Wireless networking protocol
 - * Industry term for a type of LAN
 - Local Area Network
- In layman's terms
 - * Internet access from a wireless-capable device
- Most devices support Wi-Fi so that the device can access a network to gain internet access and share network resources

What does it look like?

How does Wi-Fi work?

- Main Requirement
 - A device that receives and transmits a wireless signal
 - Router
 - sometimes a phone or computer

Router

- Network hardware
 - Wireless, uses Ethernet cable or both
 - Allows communication between devices on your local network and the internet

Router - What it does

- "Runs" your network (LAN)
- Issues unique IP addresses for each device
 - * i.e. 192.168.1.15
- Routes traffic to and from devices on your network
- Routes traffic to and from your ISP (internet service provider)

Router - What it does

- Can allow multiple devices to connect to each other and to the internet
- There is a public IP address on the Internet side or Wide Area Network (WAN)
 - All traffic comes to the public IP address
 - The router sends and receives data to and from the private IP addresses of each device

What does it look like?

802.11 - The icky details

- Set of technology standards for wireless networks
- Various updates have allowed manufactures to build network devices that have had increased
 - Speed
 - Range
 - LAN device capacity

802.11 variants

- * 802.11a
- * 802.11b
- * 802.11g

- * 802.11n Wi-Fi 4
- * 802.11ac Wi-Fi 5 MIMO
- * 802.11ax Wi-Fi 6 MIMO

With each step came increased performance, range and/or increased # of connected devices

802.11

- * 802.11a/b/g are very slow by todays internet hungry world
- * 802.11n or Wi-Fi 4 is capable of 1Gbps but.....
 - * In practice it struggles to get 100 Mbps internet speed
- * 802.11ac or Wi-Fi 5 is capable of 6.8 Gbps but.....
 - * In practice I have received 200-400 Mbps internet speed
- * 802.11ax or Wi-Fi 6 is capable of 9.6 Gbps but.....
 - * In practice I have received 500 Mbps internet speed

802.11 - Frequency ranges

- * 802.11b/g/n use the 2.4 GHz bands of frequency
- * 802.11a/n/ac/ax use the 5 GHz bands
- The lower frequency has slower speeds and better range
- * The higher frequency has higher speeds and reduced range

802.11 - Frequency ranges

- 2.4 GHz bands are subject to interference from:
 - Microwave ovens,
 - * ISM (industrial, scientific and Medical) devices
 - Security cameras
 - cordless phones
 - baby monitors

Latency

- * The is the wait between request and response inside your network
- The more devices, the more chances of latency
- * MIMO (Multi In, Multi Out)
 - Starting with Wi-Fi 5 it MIMO had 4X4 channels (think 4 4 lane freeways) for traffic to use
 - Wi-Fi 6 increased it to 8X8 channels which is 4 times as many

Wi-Fi won't cover your house?

- Wi-Fi signals have trouble with
 - * Walls (especially metal or metal frame walls)
 - * Floors (especially concrete with rebar)
 - Large metal appliance (refrigerators)
 - Large multi-floor homes are problematic
 - * Test your Wi-Fi with speed test apps or websites such as speedtest.net

Poor signal solutions

Repeaters

- Also called signal boosters and range extenders
- Small devices receive incoming signals and retransmit them
 - Tries to preserve signal intensity and distance data can travel
- Connects to your LAN via wireless or Ethernet cable

Poor signal solutions

- * Repeaters
 - * creates a separate network and passes data back forth from LAN to LAN
 - * Sometimes transferring between networks as you walk around is problematic
 - Don't place the repeater too far from the router
 - Must have a good signal to repeat
 - Try half way to the dead spot(s)
 - This a less expensive option than Mesh routers

Poor signal solutions

- Mesh Routers (using satellite hubs)
 - * Separate hubs placed around the house to provide full coverage
 - * Sold as packages and are designed to work with each other
 - Can have one to many satellite routers
 - * Easily hands off between routers as you move about
 - * Easily installed as they are built to work with each other
 - More expensive than repeaters

Bridges

- Connects two networks
- * Technically a repeater is a bridge however...
- * Bridges are typically used to connect incompatible networks
 - Internet of Things bridges (often called hubs)
 - A Phillips Hue Hub is a Zigbee bridge so Phillips Hue lamps can be controlled by the Hub but can be accessed through your LAN

But what does it mean for me?

* Internet usage has rapidly moved to video, streaming and meeting services

- * This trend will continue
- * 5G services by carriers will promote high band width services
- * The 5G competition will make ISPs improve their services
- * Households are adding increased number of devices
 - * phones
 - * tablets
 - * IOT (Internet of Things) devices
 - * bulbs, switches, cameras, doorbells, thermostats etc.
- * These can exceed your router's ability to handle it.

Scenarios

* Light usage

- Don't need really fast Internet
 - * Not big on videos and don't see pauses for videos to buffer
 - * Don't upload much
 - * ISP is not providing fast speed (less than 50 Mbps) and you don't feel a need for more
- * Only a few devices use Wi-Fi and usually not at the same time
- * Speed tests in various of parts of the house don't show a steep drop off in Internet speed
- * Shouldn't need to make any changes
 - * Wi-Fi 4 should be good enough

Scenarios

- * Light usage but in a large house
 - Speed tests in various of parts of the house show steep drop offs in Internet speed
 - * Large homes or homes with wall and floor interference
- * Should look at Wi-Fi changes
 - * Wi-Fi 5 or 802.11ac should be a help if your house about 1500 ft or less
 - You might be able to move the router to a more central location
 - For a larger home you may need repeaters or a mesh router

Scenarios

- * Heavier usage or you "feel the need for speed"
 - * If speed tests show Internet speed is below what your ISP provides it is an indication you have a slower router (Wi-Fi 4 or earlier)
 - * If the ISP is providing the router talk to them about an upgrade.
 - If you are using more and more devices upgrade to Wi-Fi 5 (or Wi-Fi 6 if you are using a lot of devices at the same time)
 - * Wi-Fi 5 or 802.11ac should be a help if your house about 1500 sq ft or less
 - * For a larger home you may need repeaters (budget approach) or a mesh router (best performance)
 - * A Mesh router with one satellite is good for > 1500 sq ft < 2000 sq ft
 - * Two satellites will for for 3000 sq ft.

Wi-Fi 5 vs Wi-Fi 6

- Wi-Fi 6 is new and is not in all devices
 - Apple Devices
 - * iPhone 11
 - * 2019 iPad Pro and 2020 iPad Air
 - No Macs yet
 - * Handles 4 times as many devices as Wi-Fi 5
 - * Can handle more speed but ISPs aren't providing that speed yet
 - Will future proof you (for a while)

Wi-Fi 5 vs Wi-Fi 6

- Wi-Fi 5
 - Cheaper
 - Moderate MIMO device handling
 - Most recent phones, tablets and computers use Wi-Fi 5
 - Handles 400 Mbps speed as provided by Spectrum

