Management of Acute Ischemic Stroke

Hamed Farid, MD, MBA

Associate Professor of Radiology and Neurosurgery Marvin Blaski Stroke Medical Director Endowed Chair, St. Jude Medical Center Chief, Neurointerventional Radiology

Acute Ischemic Stroke

Impact

– #1 cause of adult disability

- #2 cause of dementia

#3 cause of death in the United States
 - 2nd cause of death worldwide

Stroke Incidence

An estimated 795,000 Americans will suffer a new or recurrent stroke this year...

...that's one every 40 seconds

Agre-Adjusted WARDER ADDRESS Number of Deservices gran (1000,0000) Countries 36-28 60.08 217 - 1066 GC22 1003 - 1114 60/61 inişi - itzişi 6hiliji 12461 - 18293 644. inggi Halanit Haria

Estima encognitally supplied for denomtion indeligned active homomotives with second populations

10040 coloribrations (89480

Fore According to the State of Sector State of

American Heart Association. Heart Disease and Stroke Statistics 2012 Update At-a-Glance

Two Types of Stroke

Ischemic Stroke

Hemorrhagic Stroke

Ischemic = type of condition in which oxygen is deficient

Often caused by a blood clot or plaque buildup that blocks blood flow

Hemorrhage = bleeding

Occurs when a blood vessel ruptures, causing blood to leak into the surrounding tissue

Two Types of Stroke

13% of strokes are -----hemorrhagic:

- 10% intracerebral
- 3% subarachnoid

4 out of every 5 families will be touched by stroke

--- 87% of strokes are ischemic; only 1% of these patients get intervention.

American Heart Association. Heart Disease and Stroke Statistics 2012 Update At-a-Glance

35-40% of Ischemic Strokes are Considered "Large Vessel"

- This subset of ischemic stroke comprises blockages in the:
 - Internal Carotid Artery (ICA)
 - Middle Cerebral Artery (MCA)
 - Vertebral / Basilar Artery

If left untreated, patient prognosis with these types of stroke is poor

Vessel	Mortality Rate	
ICA	53% ¹	
MCA	27% ²	
Basilar Artery	89-90% ³	

1. Jansen O, et al 2. Furlan A et al. PROACT II Tria 3. Brückmann H et al

Physiological Impact of Stroke

Time=Brain

Estimated Pace of Neural Circuitry Lost in a Typical Large Vessel Acute Ischemic Stroke

Time	Neurons Lost	Synapses Lost	Mylinated Fibers Lost	Accelerated Aging
1 second	32,000	230 million	218 yards	8.7 hours
1 minute	1.9 million	14 billion	7.5 miles	3.1 weeks
1 hour	120 million	830 billion	447 miles	3.6 years
Avg. stroke	1.2 billion	8.3 trillion	4470 miles	36 years

Saver, Jeffrey, *Time is Brain – Quantified*. Stroke 2006; 37: 263-266

US Prevalence of Stroke by Age and Sex¹

Stroke kills more women than breast, ovarian, uterine and cervical cancer combined²

American Heart Association. Heart Disease and Stroke Statistics 2012 Update At-a-Glance
 Kochanek KD, et al. Natl Vital Stat Rep. 2011; 59(4):1-68

Race is a Risk Factor for Stroke

African-Americans have a risk of first-ever stroke that is almost twice that of Caucasians

American Heart Association. Heart Disease and Stroke Statistics 2012 Update At-a-Glance

TIA's (Transient Ischemic Strokes)

- "Mini-Stroke" symptoms can be similar to a stroke but resolve on their own in a short period of time
- ~5 million Americans have been diagnosed with having had a TIA; true prevalence is probably greater because many TIA's go undiagnosed
- A meta-analysis shows that patients with TIA have a 10-17% risk of stroke within 90 days
- Within 1 year of TIA, ~12% of patients will die

Stroke is a Leading Cause of Death

250 200 193.6 186.2 150 -100 -50 -Diseases of the Heart Malignant Neoplasms Chronic lower respitory Cerebrovascular diseases diseases

Death Rate (per 100,000 population)

Stroke accounts for 1 of every 18 deaths in the United States, that's 1 every 4 minutes

American Heart Association. Heart Disease and Stroke Statistics 2012 Update At-a-Glance

There are Over 7 Million Stroke Survivors...

...two thirds of which are living with moderate to severe disability

American Heart Association. Heart Disease and Stroke Statistics 2012 Update At-a-Glance

The Total Estimated Cost of Stroke is \$48 Billion

Medications & Other Costs ------\$3.5 Billion

> Physician Costs -----\$4 Billion

Rehabilitation ----\$4.5 Billion Lost productivity due to mortality and morbidity \$15 Billion

The lifetime cost of stroke to a single patient is more than \$140,000

--- Hospitalization Costs \$16 Billion

Risk Factors for Stroke

Hereditary / nonmodifiable

- Increasing age
- Family history of stroke
- Prior TIA
- Prior ischemic stroke
- Prior heart attack

Modifiable

- High blood pressure
- High cholesterol
- Smoking / tobacco use
- Diabetes
- Physical inactivity / obesity
- Afib
- Carotid Artery Stenosis
- End-stage renal disease

So a stroke comes into the hospital. Now what?

Emergency Medical Services: American Heart Association Recommendations Onset time of stroke symptoms Time of onset is very important Clock time at onset of symptoms is preferred over "duration" Notification to hospital of triage Obtaining telephone numbers of witness or family

National Institute of Neurological Disorders and Stroke (NINDS) Recommended Treatment Times ED Door-to-MD 10 minutes ED Door-to-Stroke Team notification 15 minutes ED Door-to-CT scan 25 minutes ED Door-to-Drug 60 minutes **ED** Door-to-Admission 3 hours

What Are Signs and Clinical Presentation of Stroke?

Symptoms of stroke vary depending on the part of the brain that is affected:

- Sudden numbress or weakness of the face, arm, or leg
- Sudden trouble seeing in one or both eyes
- Sudden confusion or trouble speaking
- Sudden trouble with walking, dizziness, or loss of balance
- Sudden, severe headache with no known cause

Conditions that Mimic Stroke

Alcohol Intoxication Migraines Epilepsy Psychogenic disorders Brain tumor Encephalitis Vertigo Hypo- or Hyperglycemia

Immediate Diagnosis and Management

Stat CT Head Scan

Standard diagnostic tool to <u>rule</u> <u>out</u> hemorrhagic stroke

 Subtle or early signs of infarct
 Hyperdense vessel sign – indicative of thrombus or embolus
 Loss of gray-white differentiation
 Detected in many large vessel anterior circulation occlusions **CT Showing Hyperdense MCA Sign**

Immediate Diagnosis and Management

Lab Work

- EKG
- Maintain O2 saturation \ge 95%

 Neurological Exam – Stroke Assessment including National Institute of Health Stroke Scale (NIHSS) Stroke Assessment National Institute of Health Stroke Scale (NIHSS) Severity scoring: range 0-42 0 = normal, 42 = worst score NIHSS is used to measure severity and quantify objective changes in the assessment

- Level of consciousness, following commands
 <u>Gaze preference</u>
- 3. Visual acuity partial/complete hemianopsia or total blindness
- 4. Facial palsy smile/raise your eyebrows

National Institute of Health Stroke Scale (NIHSS) – cont' d

- 5. Motor arm hold up your arms for 10 secs
- 6. Motor leg hold up your leg for 5 secs
- 7. Limb ataxia in 1 or 2 limbs
- 8. Sensory do you feel this
- 9. Best language aphasia or mute
- 10. Dysarthria slurred or unintelligible
- 11. Extinction/Inattention to double simultaneous stimulation, partial or profound neglect

NIHSS: Stroke Severity & Vessel Location

 NIHSS ≥ 12 → 91% Positive Predictive Value of Large Vessel Stroke

Fischer. Stroke. 2005 Oct;36(10):2121-5.

NIHSS 5-9 → 36% Large Vessel
 NIHSS 10-14 → 44% Large Vessel
 NIHSS 15+ → 100% Large Vessel

Lewandowski. Stroke. 1999 Dec;30(12):2598-605.

Large Vessel Strokes

ICA, ICA-T, MCA, vertebrobasilar arteries
 Poor natural history in large vessel stroke
 Mortality rates from published literature
 ICA-T: 53% Jansen, 1995
 MCA: 30-35% Chambers, 1987
 Basilar: 89-92% Brückmann H, 1986 & Brandt, 1996

Ischemic Stroke: Basic Criteria for Endovascular Rx

1) Large Vessel Occlusion (CT/MR angiography)

Large Vessel Occlusion

Small Vessel Occlusion

2) Salvageable tissue (time window, imaging studies)

Neurovascular and Spine Associates

Acute Stroke Protocol

Stroke CT = noncon CT, CTA (chest through brain), CTP, post-contrast CT

Neurovascular and Spine Associates

CT Angiography

Intravenous bolus of iodinated contrast is given through peripheral IV. A rapid scan is then performed from the heart to the top of the head, tracking the contrast through the arteries.

Hemorrhagic Stroke: helps identify aneurysms, vascular malformations Ischemic Stroke: helps identify large vessel occlusions/stenoses

CT Angiography – Extracranial Vessels

Neurovascular and Spine Associates

CT Angiography – Extracranial Vessels

Neurovascular and Spine Associates

CT Angiography – Intracranial Vessels

CT Angiography – Intracranial Vessels

CT Perfusion

An intravenous bolus of iodinated-contrast is given through a peripheral IV. Serial images are then taken over time at a given location (or "slice") of the brain, watching the contrast "wash in and wash out."

CT Perfusion

Neurovascular and Spine Associates

The Ischemic Penumbra

Mean Transit Time

Cerebral Blood Volume

Neurovascular and Spine Associates

Acute Stroke Protocol

Stroke CT = noncon CT, CTA (chest through brain), CTP, post-contrast CT

Consider Thrombolysis Thrombectomy

Time from stroke symptom onset (hr)

NINDS t-PA Ischemic Stroke

- Intravenous t-PA -vs- placebo (N=312 each group)
 - 0.9 mg/kg t-PA IV (10% bolus, 1 hr infusion)
- within 90-180 mins of symptom onset
- CT exclude hemorrhage

- symptomatic intracranial hemorrhage
 6% -vs- 0.6% (t-PA -vs- placebo)
- 3% hemorrhage-related death

NEJM 333:1581 (1995)

Acute Stroke Protocol

Stroke CT = noncon CT, CTA (chest through brain), CTP, post-contrast CT

Consider Thrombolysis Thrombectomy

Small and large vessel ischemic strokes.

Time from stroke symptom onset (hr)

Intraarterial Thrombolysis – PROACT Trial

180 pts with acute MCA stroke presenting within 3-6 hours randomized 2:1 to IA pro-urokinase or placebo; primary outcome mRS at 90 days

$PROACT-II: mRS \le 2$

* OR 2.13 (1.02-4.42), p=0.043

PROACT-II: Conclusions

- IA r-ProUK for M1 or M2 occlusions, given under 6 hours, provides 60% relative benefit and 15% absolute benefit (mRS ≤ 2)
- Symptomatic intracranial hemorrhage risk increased (10% IA lytic, 2% control)
- No change in mortality
- MCA recanalization rate 67% (vs. 18% in placebo and ~25-30% with IV tPA alone)
- Natural history of M1/M2 occlusions: 75% disability at 90 days

Consider Thrombolysis Thrombectomy

Small and large vessel ischemic strokes.

Thrombectomy

Large vessel ischemic strokes.

Time from stroke symptom onset (hr)

"Stent-retriever": Self-Expanding Non-Detachable Stent

Newer Technologies = Better Recanalization

	MR CLEAN	ESCAPE	EXTEND- IA	SWIFT PRIME
Ν	500 patients233 IAT267 Control	316 - 165 IAT - 150 Control	70 - 35 IAT - 35 Control	196
Device Usage	Open Label - Mostly stent retrievers	Open Label - 86% Stent Retrievers	Solitaire (provided free by Covidien)	Solitaire
Enrollment Time Window	6 hrs from symptom onset	12 hrs from symptom onset	4.5 hrs from symptom onset	6 hrs from symptom onset
Key Selection Criteria	- CTA LVO	 CTA LVO ASPECTS ≥ 6 Moderate/ Good Collaterals 	 CTA LVO Mismatch with ischemic core < 70 ml on CTP 	 CTA LVO ASPECTS ≥ 6
Baseline NIHSS	- 17 IAT- 18 Control	- 16 IAT- 17 Control	- 17 IAT- 13 Control	17 both IAT and Control
Median ASPECTS	9 both IAT and Control	9 both IAT and Control	Not applicable	9 both IAT and Control

	MR CLEAN	ESCAPE	EXTEND- IA	SWIFT PRIME
mRS ≤ 2 @ 90 Days	IAT: 32.6% Control: 19.1%	IAT: 53% Control: 29.3% NNT: 4	IAT: 71% Control: 40%	IAT: 61.1% Control: 35.5%
Revas Rate of IAT	58.7% TICI 2b/ 3	72.4% TICI 2b/3	86% TICI 2b/3	88% TICI 2b/3
Mortality at 90 Days	IAT: 21% Control: 22%	IAT: 10% Control: 19%	IAT: 9% Control: 20%	IAT: 12.2% Control: 25.8%
sICH	IAT: 7.7% Control: 6.4%	IAT: 3.6% Control: 2.7%	IAT: 0% Control: 6%	IAT: 1.0% Control: 3.1%

SWIFT-PRIME

Multicenter International Randomized Control Trial comparing Solitaire + IV tPA vs. IV tPA alone in patients with large vessel occlusion.

St. Jude Medical Center was one of only 2 sites in Southern California that was invited to participate in this study.

SWIFT PRIME

Key Inclusion Criteria

- Age 18 80
- Pre-stroke Modified Rankin Score ≤ 1
- NIHSS 8 29 at randomization
- Received IV t-PA within 4.5 hours of stroke onset
- CTA or MRA confirmation of large vessel occlusion (intracranial ICA, M1 or carotid terminus)
- Groin puncture within 6 hours of stroke onset and within 90 minutes* of qualifying imaging

*optimal target: within 70 mins

SPRIME: Reperfusion

SPRIME: Primary endpoint

Functional independence (mRS 0-2) at 90 days

Solitaire + IV t-PA

59 (60.2%)

IV t-PA

33 (35.5%)

Endovascular Acute Stroke Therapies

Intra-arterial Thrombolytics (out to ~ 6 hours)

Mechanical Clot Disruption (out to ~ 24 hours)
Retrieval device (e.g., Merci)
Suction catheter (e.g., Penumbra)
Stent retrieval (e.g., Solitaire, Trevo)
Balloon angioplasty and/or stent
Clot maceration (microcatheter, microwire)
Ultrasound

Acute Stroke – Case 1

30 year old man with neck injury playing tag football abrupt onset slurred speech and double vision - ? concussion right arm and leg weakness, tired/sleepy

found sleepy but arousable, slurred speech, R lower facial weakness, not moving R arm or leg. Time from onset – 3.5 hours.

Acute Stroke – Case 1

Taken to St. Jude Medical Center. Neuro evaluation, non-contrast CT brain

© 2002 Sinauer Associates, Inc.

CT Angiography

Initial Cerebral Angiography

Merci[®] Endovascular Thrombectomy

Merci[®] Endovascular Retrieval System

Pre-thrombectomy

Post-thrombectomy

Acute Stroke – Case 1

Complete neurologic recovery.

Cause of stroke: dissection of the vertebral artery from neck trauma, complicated by thromboembolism to the basilar tip.

© 2002 Sinauer Associates, Inc.

Acute Stroke – Case 2 72 year old female Last known normal at 11 PM last night before going to sleep She woke up at 8 AM with left hemiplegia CTA/CT Perfusion demonstrates a right MCA occlusion with large penumbra NIHSS 12

Acute Stroke – Case 3 26 y.o. Female: Left Brain Stroke

26 yo Female: Left Brain Stroke

Before

26 y.o. Female: Left Brain Stroke

Experience with Stent Retrievers

July 2013 – January 2017:

- 161 patients treated with a stent retriever device (Solitaire or Trevo[®]).
- All selected with CT angiography and CT perfusion studies.
- TICI 2B or 3 recanalization in 90%.
- sICH in 2.0% (4/161), in patients treated with IV tPA + IA tPA as well.
- Early to have long-term clinical outcome data, but f/u in first 128 have shown good outcome (mRS 0-2 at 90 days) in 61%.

Conclusion: Endovascular Therapy in Large Vessel Occlusion

Acute Ischemic Stroke secondary to large vessel occlusion is a potentially devastating disease for which best treatment remains elusive.

To promote best possible clinical practice, the administration of interventional stroke treatment should remain in the hands of experienced stroke experts who would maximize data collection to achieve the best possible patient outcomes.

Conclusion: Endovascular Therapy in Large Vessel Occlusion

Better patient outcomes with interventional stroke therapy: Patient selection using advanced imaging Advanced device technology Faster and more complete recanalization Better time management Getting patients to endovascular capable hospitals Moving patients more efficiently from ER door to recanalization

Thank you

Hamedfarid@gmail.com