LECTURE # 8

RENEWABLE ENERGY (cont'd)

ENERGY RESOURCES

Fossil	Renewable	in Development	
Coal	Solar	Nuclear	
Oil	Wood	Geothermal	
Gas	Hydraulic	Biomass	
	Wind	Biogas	

WATER POWER

WATER POWER

- Known since antiquity
- Used in watermills
- Used water from springs, rivers, tides

Oldest Watermill Using a Crank and a Connecting Rod Roman, 3rd Cent. CE

Roman water-powered grain mill. It used a gear to transmit the movement from the water wheel

Undershot and Overshot Water Wheels for Milling 1st Cent. CE

Breast Shot Water Wheel for Milling 3rd Cent. CE

Water Mill in Belgium – 12th Cent. CE

Breast Shot Watermill in England. Early 20th cent.

VAPOR POWER

Denis Papin's "Steam Digester", London, 1679

Denis Papin's First Piston Machine – Marburg, Germany, 1690

First Locomotive – Richard Trevithick,

George Stephenson's First Locomotive

Steam Locomotive – France 1930

HYDROELECTRIC POWER

Global Public Support for Energy Sources - 2011

Global public support for energy sources

"Please indicate whether you strongly support, somewhat support, somewhat oppose, or strongly oppose each way of producing energy"

Source: Ipsos, May 2011

Hydroelectric Power

Low-cost, non-polluting energy source Raising water level by building a dam on a river Water is forced to fall by gravity through turbines that turn generators Generators create electricity

Hydroelectric Dams are the Most Widely used Form of Sustainable Energy

Hydroelectric Dam

Turbine and Generator

Water Dams

3000 BC – Jawa Dam, Jordan – 9 m high 2800 BC – Sadd-el-Kafara Dam, Egypt – destroyed 1700 BC – Great Dam of Marib, Yemen – 4 m high 15th-13th Cent. BC – Eflatun Pinar – Konya, (Hittites) 251 BC – Du Jiang Yan – Oldest dam in China 220 BC – Various dams in India **Roman dams** - Lake Homs and Harbaka in Syria – water-proof mortar Middle Ages - Amstel-dam, Rotte-dam

Xia Dynasty in China c. 2070 – c.1600 BC

First dynasty in the traditional Chinese history Yu – First emperor of this dynasty Stopped the Yellow river flood by building canals for drainage and <u>irrigation</u> of fields Vast agricultural progress Early medicine

Roman Dam at Cornalvo, Spain 2000 years old

Hydropower - History

- 1770s French Bernard Forest de Bélidor wrote about hydraulic machines
- 19th century Electrical generator developed
- Industrial revolution demanded water and power
- 1878 First hydroelectric power in England
- 1881 First waterpower in USA
- 1886 45 hydroelectric power stations in the US and Canada
- 1889 200 stations in US
- 1920 40% of the power in USA was hydroelectric
- 1936 Hoover Dam

Hydropower in Modern Times 1936 – Hoover Dam - 1,345 MW 1942 – Three Gorges Dam (China) – 22,500 MW 1984 – Itaipu (Brazil & Paraguay) – 14,000 MW

US has over 2,000 hydroelectric power stations ⇒ 6.4% of its total electrical production

Norway	98% of	total E	Electrical	Production
Brazil	68%	"	"	"
Venezuela	67%	"	"	"
Canada	60%	"	"	"

2012 World (Civil) Electricity Generation by Fuels

Coal/Peat Natural Gas Hydro Nuclear fission Oil Renewable

40.4% 22.5% **16.2%** 10.9% 5.0%

Hoover Dam – 176 ft. high - 1936

Itaipu Dam – 1984 Parana River, Brazil & Paraguay 94.7 TWh in 2008

1 TWh = 10¹² watt/hour

Three Gorges Dam – 2003 - 2009 Central China, Yangtze River The Largest Hydroelectric Power 98.1 TWh in 2014

Three Gorges Dam Turbine

The Top Five Hydroelectric Power Producing Countries

ENERGY RESOURCES

Fossil	Renewable	In Development
Coal	Solar	Nuclear
Oil	Wood	Geothermal
Gas	Hydraulic	Biomass
	Wind	Biogas

WIND POWER

WIND POWER

Definition: Use of air flow through wind turbines to mechanically power generators to produce electricity. Wind farms consist of many wind turbines connected to the electric grid. On shore and off shore farms. Inexpensive source of renewable energy very much adopted by many countries. China and India made progress. Denmark generates 40% of its electricity from wind.

Wind Power - History

Known and used since sailing.
Netherlands, USA, and Australia used wind mills.
1887 - James Blyth - Glasgow - to power home lightning
1888 - Charles Bush - Cleveland OH - 17m in diam.
19th Cent. - Introduction of electric power.

A Mycenaean Boat

Spanish galleon – 16th century

Royal Yachting Association

Charles Brush Windmill - 1888

Which Should Be Increased in Scotland?

California Wind Turbines at Altamont Wind Farm (6000 Turbines)

Wind Turbine in Texas U.S. Landowners Typically Receive \$3,000–\$5,000 Annual Rental Income

Float-wind Turbine "Windfloat", Operating at Rated Capacity (2 MW) -Portugal

Vertical Axis Wind Turbine – Bristol, UK

5 M HIGH AND 3 M ACROSS

Wind Power – Global Growth of Installed Capacity – 1999 - 2015

Worldwide Electricity Generation from Wind (up to 2012)

Top Windpower Electricity Producing Countries (in TWh)

Country	Production
USA	141
China	118
Spain	49
Germany	46
India	30
United Kingdom	19
France	15
Italy	13

Wind Resources and Transmission Lines in USA

ENERGY RESOURCES Renewable In Development Fossil

Nuclear Coal Solar

Wood

Geothermal

Gas

Oil

Hydraulic

Biomass

Wind

Biogas

ENERGY DEVELOPMENT

NUCLEAR ENERGY

NUCLEAR ENERGY

Greeks and Indians introduced the philosophical concept of the atom

(*a-tom* = that cannot be divided)

19th cent. - The atom is the smallest constituent of the matter

Henri Antoine Becquerel (1852-1908) French Physicist

Discovery of Radioactivity by Antoine Henri Becquerel (1896)

Spontaneous radioactivity is a famous example of **serendipity**. *"Chance favors the prepared mind"*

Becquerel in his Lab

NUCLEAR ENERGY Electrons

1897 – Sir John Joseph Thomson (English physicist):
 Cathode rays are made by electrons. "The plum pudding" model

Electrons = identical to particles given off by photoelectric and radioactive materials
Electrons carry the negative electric charge of the atom
Electrons carry the electric current in metal wires

Atomic Nucleus

1911 – Ernest Rutherford described the nucleus
1932 – Protons and neutrons were described
Nucleus = largest part of the atom

The Electrons

1913 - Niels Bohr – Electrons move on orbits around the nucleus. "Quantum leaps" btw. orbits

Nuclear Energy - History

1932 – Ernest Rutherford: immense amounts of energy released by protons hitting lithium atoms in an accelerator
1932 – James Chadwick discovered the neutron
1934 – Frédéric and Irène Joliot-Curie discovered induced radioactivity, which emits rays: alpha, beta, gamma

URANIUM (U)

Uranium Ore (Pithchblende)

Enrichment of Uranium U-235

Natural Uranium 0.72% U-235

Low-enriched Uranium (reactor grade) 3-4% U-235

Highly enriched Uranium (Weapons grade) 90% U-235

PLUTONIUM (Pu)

1940 – Produced and isolated by deuterium bombardment of uranium in the Berkeley Radiation Laboratory of the University of California, Berkeley

1945 – "Trinity" - first implosion at Alamogordo, NM

1945 – "Fat Man" atomic bomb dropped at Nagasaki

High-Energy Physics (1)

Nuclear Fission: 1938 - Otto Hahn directed neutrons onto uranium ⇒ radiobarium, radiokrypton,

and 3 neutrons

Nuclear Fission Otto Hahn's Experimental Apparatus

High-Energy Physics (2)

1930s – Enrico Fermi – Used neutrons to increase the effectiveness of induced radioactivity
Leo Szilard – Self-sustaining nuclear chain reaction
Dec. 2, 1942 – Fermi and Szilard – First man-made nuclear reaction "Chicago Pile-1" – University of Chicago

Chain Reaction

December 2, 1942, when Scientists Observed the First Man-made Nuclear Reactor, the "Chicago Pile-1" at University of Chicago

NUCLEAR ENERGY

Definition: Energy released from nuclear reactions generating heat Nuclear reactions: nuclear fission, decay, fusion **Nuclear power plant** heat \Rightarrow steam turbines \Rightarrow electricity Fission - electric power plants Since 1970, fission-electricity prevented release of 64 Bil. Tonnes of CO₂

Hiroshima after Dropping the Uraniumbased Atomic Bomb (1945)

Plutonium Implosion Atomic Bomb Nagasaki, Japan, 1945

First Light Bulbs Lit with Electricity from a Nuclear Reactor (Chicago, 1951)

High-Energy Physics (3) Fusion

The only man-made device to achieve nuclear fusion is

the hydrogen bomb (called "Ivy Mike") in 1952

High-Energy Physics (4) Decay

The nucleus emits an alpha particle and transforms (decays) in an atom with a smaller mass

Nuclear Energy – History of its Applications

1940s - Manhattan Project - Enriched uranium ⇒ First nuclear weapons - Hiroshima and Nagasaki Dec. 20, 1951 - First electricity generated – Arco, ID June 27, 1954 - First world nuclear power plant for electricity in USSR 1955 - UN Intl. Atomic Energy Agency (IAEA) Aug. 27, 1956 - First commercial nuclear power station - Calder Hall, UK US – 75 nuclear submarines; Russia – 61 nuclear submarines Main applications: Electricity, Weapons, Satellites

USA and Russia Nuclear Weapons Stockpile

USS Bainbridge, USS Long Beach, USS Enterprise

Nuclear Energy (NP) Its Changing Status in the World

Installed nuclear capacity: 1960 – 1 GW 1970 – 100 GW 1980 – 300 GW After 1970 – 2/3 of nuclear plants cancelled 1973 - Oil crisis - France and Japan *⇒* more NP Mid-1970s - anti-nuclear protests. Opposition to NP 2001 - "Nuclear renaissance" b/o oil prices ↑ and greenhouse emissions ↑

2012 World (Civil) Electricity Generation by Fuels

Coal/Peat40.4%Natural Gas22.5%Hydro16.2%Nuclear fission10.9%Oil5.0%Renewable5.0%

August 27, 1956. Calder Hall, UK The World's First Commercial Nuclear Power Station Connected to the National Power Grid

Annual Electricity Net Generation Growth in the World (1980 – 2011)

Annual Electricity Net Generation in the World

Electricity (TWh) Supplied from Nuclear Reactors 1995-2015

Electricity Generation Trends in the Top Five Fission-Energy Producing Countries 1980 – 2012 Annual Electricity Generated (Bil. kWh)

USA (19%)* France (80%)* Japan Russia S. Korea

* % of total electricity

Applications of Nuclear Energy

Consumer products: Household appliances

Food & Agriculture: Approved to preserve food and to eradicate pest insects

Industrial uses: Auto and aircraft, mining, oil exploration, construction

Medicine & Scientific Research: Nuclear medicine imaging; radioactive tracers

Space Exploration: Essential

Oil and Gas Exploration

Water desalination

Smoke Detector uses NE

Radura Logo Shows that Food has been Treated with Ionizing Radiation

Nuclear Energy - Economics

Uranium resources reportedly available for "160,000 years" Costs (2012): Natural gas \$64/MWh \$96/MWh Nuclear power Solar power \$130/MWh **Risks and Concerns**: Nuclear accidents **Terrorist attacks** Increasing cost of oil Nuclear fission = 2.5% of global energy consumption "New renewables" = 2.0% of global energy consumption

Nuclear Energy Accidents

1979 - Three Mile Island, NJ – Solid decay products were contained.

One cancer death / 2 Million people.

1986 – Chernobyl, Ukraine – Solid decay products released

2%-3% increase in cancer deaths.

2011- Fukushima, Daiichi, Japan nuclear accident. No reported disease or deaths related directly to the accident.

Anti-Nuclear Protest in Bonn, Germany, following the Three Mile Island Accident October 14, 1979.

Anti-nuclear Protest in Harrisburg, PA, following the Three Mile Island Accident, 1979

World Uranium Production and Demand

The Nuclear Fuel Cycle

Ionizing Radiation Hazard Symbol

Nuclear Energy Debate

1970-1980 - Debate about Use of NE for electricity In favor: It is a sustainable cheap energy Reduces CO₂ emissions and air pollution Energy security - Oil resources will run out Promising for space propulsion Against: Threats related to mining uranium -> diseases Threats about processing, transport, storage – radioactive waste Accidents, sabotage Terrorism **Risk of nuclear weapons proliferation**

Nuclear vs. Renewable Energy

- 1. Solar, wind, and hydropower are the safest and cleanest
- Energy from carbon dioxide sources is on the way out b/o air pollution, green house gas levels, and global warming
- 3. Nuclear power develops slowly because of public reservations and opposition
- 4. Nuclear power is economical
- Nuclear power introduced in several European countries in 20-50% of applications
- Could account for 80+% of the world energy in 40 years at a cost of 1% of global GDP annually.

GEOTHERMAL ENERGY

GEOTHERMAL ENERGY

- Definition: Energy generated and stored in the Earth
- Earth's internal heat = thermal energy from
- Earth's formation
- Radioactive decay

Temperature at core-mantle = 7,200°F Hot springs ⇒ Heating since ancient times 2013 – Worldwide electrical energy = 11,700 MW Cost-effective, reliable, sustainable, clean

Geothermal Energy - History

- 300 BC Oldest source Quin Dynasty China
- 50 CE Romans built a bath at Bath, England (*Aquae Sullis* = "Waters of Sul" a Celtic god)
- 14th Cent. Chaudes-Aigues, South France, still working
- 1827 Larderello, Italy extracting boric acid
- 1892 Boise, ID District heating system
- 1904 First geothermal generator at Larderello 4 light bulbs
- 1943 Iceland Heating homes
- 1960 First geothermal electric power plant The Geysers, CA
- 1973 Geothermal technology popular in Sweden

The Oldest Known Pool Fed by a Hot Spring, Built in the 3rd Century BC China

Nesjavellir Geothermal Power Station Iceland

Installed Geothermal Electric Capacity 2010

Country	Capacity MW	% of national Electricity Production
United States	3,086	0.3
Philippines	1,904	27.0
Indonesia	1,197	3.7
Mexico	958	3.0
Italy	843	1.5
New Zealand	628	10.0
Iceland	575	30.0
Japan	536	0.1

Global Geothermal Electric Capacity Installed vs. Realized Capacity

Our Future Sources of Energy LA Times 2016

GEOTHERMAL HEAT PUMP

GEOTHERMAL HEAT PUMP

A geosolar system. "Ground Source Heat pump" (GSHP) Using the heat from solar energy which is absorbed into the Earth's surface Upper 20 ft. of Earth's crust has constant temp. 50-60°F Caves are warm in winter and cool in summer. A pump system may cool the house in summer and warm it in winter

Cost vs. energy savings

Annual growth of 10%

Ground Source Heat Pump - History

- 1853 Lord Kelvin developed the Heat pump
- 1940 R. Webber built the first GSHP
- 1948 First commercial project installed Portland, OR
- 1970 GSHP popular in Sweden
- 2004 >1 million units worldwide
- **Great** potential

Heat and Cold Pump

Ground Source Heat Pump - Economics

High cost – Low operational cost

What's the cost of electricity and fuels?

Government incentives may reduce cost

2011-1012 State of Maryland incentives ⇔ cost of \$26,700 for a home unit; \$1.90/ Watt used

Cost varies widely

May be economical and reliable

BIOMASS ENERGY

BIOMASS ENERGY

Definition: organic matter derived from living organisms

Sources:

1st-generation biofuels = Sugarcane and corn stocks
⇒ bioethanol ⇒ electricity
2nd-generation biofuels = Burning wood (oldest biomass) and municipal waste = lignocellulose mass
Huge mass available for energy
Major disadvantage – air pollution

Biomass Energy - Economics

World resource: Annual production = 100 Bil. Tonnes of carbon = 1.4 times the Terawatt hours required

Problems: Air pollution Cost of transportation Environmental concerns

Biomass-Producing Electricity in Billion kW/h

Biomass – An Ingenious Machine for Stump Removal

BIOGAS ENERGY

BIOGAS ENERGY

Definition: Mixture of gases produced by the breakdown of organic matter in absence of oxygen (anaerobic) **Anaerobic digestion** – fermentation of biodegradable materials Raw materials: Agricultural waste, manure, municipal, sewage, plant, green, and food waste Biogas is: Methane 40-75% Carbon dioxide 23-50% Nitrogen 0-10%

Biogas – Uses and Production

Uses: Fuel, Heat, Energy. Compressed into liquid may replace 17% of vehicle fuel (UK) **Production:** "Anaerobic digester" – Microorganisms digest the waste \Rightarrow biogas. The digestate is agricultural fertilizer <u>Renewable resource</u> \Rightarrow Continuous production-and-use cycle Manure 🔿 high levels of methane Millions of cattle in US I 100 Bil. kWh electricity for millions of homes One cow \Rightarrow manure/d \Rightarrow electricity for one 100W light bulb (!) Explosive. The odor is due to added substance

Basic Design of a Biogas Plant

Biogas Bus and Biogas Train in Sweden

END OF LECTURE #8

End of this Course What Did We Accomplish?

We have reviewed the Natural Resources and the interactions of the Humans with them:

Air, Water, Food, Metals, Minerals, and Energies

- 1. Their Place on Earth ⇒
- 2. Their History ⇒
- 3. Their Economy ⇒
- 4. Their Social Molding of Humankind ⇒
- 5. Their Political Impact on the Society

We Also Learned About our Patterns of Action

- 1. We find a resource
- 2. We exploit the resource to the maximum ⇒ <u>Toxic effects? Environmental hazards? Diseases?</u>
- 3. We cannot replenish the resource
- 4. We search for other resources
- We have been late in using available, <u>renewable</u>, non-toxic resources
- 6. What do we do for future generations?

Some Thoughts

Nature has many resources It is for us to observe and discover Man is a good observer Progress has been slow Progress has been marred by greed, disregard, and incompetence We must educate our children and our youth They are the future on our planet

THANK YOU