LECTURE #5

IRON (Fe = Ferrum)

METALS Year of Discovery

- 6000 BC GOLD
- 4000 BC SILVER
- 4200 BC COPPER
- 3500 BC LEAD
- 1750 BC TIN
- 1500 BC IRON
- 750 BC MERCURY
- 1746 ZINC
- 1751 NICKEL
- 1753 BISMUTH
- 1755 MAGNESIUM
- 1757 PLATINUM

- 1781 MOLYBDENUM
- 1789 URANIUM
- 1791 TITANIUM
- 1797 CHROMIUM
- 1803 PALLADIUM
- 1808 CALCIUM
- 1817 LITHIUM
- 1817 CADMIUM
- 1827 ALUMINUM
- 1830 VANADIUM
- 1898 POLONIUM
- 1898 RADIUM

Metals in Earth Crust

	Parts per million
Iron	50,000
Copper	70
Lead	16
Tin	2
Silver	0.1
Gold	0.005

Bronze and Iron Ages

IRON

35% of Earth's mass as Fe-Ni alloy 5% of Earth's crust Fourth most abundant in the Earth's crust Found as oxides: *hematite* (oxide), *limonite* (hydroxide), *magnesite (carbonate)*, and *siderite* (carbonate) Large deposits of iron sulfate (pyrite) Easily oxidized \Rightarrow rust \Rightarrow red spots and bands on rocks Pure iron is soft. Hardened with addition of coal Important element in human body (hemoglobin in the red blood cells, myoglobin in muscle cells)

Iron Timeline

- 3,500 BC Egypt Meteoritic iron (7.5% nickel) soft 3,000-2,700 BC - Mesopotamia - First iron production Heating and hammering was used ~1,500 BC - Melting point was too high for ancient furnaces:
- Copper's melting point = 1,085°C
- Tin's melting point = 232°C
- Iron's melting point = 1,538°C
- 1,500-1,200 BC Hittites Made high temperature kilns First to smelt iron ⇔ IRON AGE

Iron Timeline (cont'd)

India 1,200 BC - Greece 1,100 BC - Roman Era - Celtic expansion - Europe

Large scale iron production – 1,200-1,000 BC

1,000 BC - Charcoal was added to iron ⇒ steel

513 BC – Chinese made furnace capable of melting iron

18th Cent. England - Industrial Revolution - Refining pig iron to wrought iron (less carbon) ⇒ steel

Iron Age

Started in Anatolia ~1,200 BC

Changed the civilization and culture because

of the new tools introduced

- Agriculture methods Metalsmithing
- Lifestyle many new objects
- Alphabetic characters
 ⇒ Written language
- Religious practice Vedas, Hebrew Bible
- Artistic styles ⇒ decorations, designs
- Weapons, wars ⇒ destruction

Diffusion of Metallurgy from Asia Minor in the Neolithic Era

Copper, Bronze, and Iron Ores in Sub-Saharan, Central, and South Africa

Iron furnace

Alloys of Iron

Mixture of two or more elements in which the main component is a metal Modifying the properties for a desirable effect: Harder, non-corrosive, luster, color, cost Alloys of iron: Steel, stainless steel, cast iron, tool steel <u>Stainless steel</u>: carbon steel + chromium, nickel, molybdenum Cast iron: iron + silicon Tool steel: Iron + tungsten, chromium, vanadium, molybdenum High strength-to-weight: Alloys of aluminum + titanium + magnesium

Iron Uses

Found in a wide variety of oxides (rust) Relatively soft metal Smelting process carbon added (2.1% = steel) Made possible our progress in construction and modern life. All means of transportation, appliances, etc. Core of modern civilization

Iron in Humans

From nutrition, iron passes into blood – attached to transferrin Iron deposits in **bone marrow** where red blood cells are formed Hemoglobin in red blood cells and Myoglobin in muscles cells ⇒ oxidation **Hemoglobin** = **heme** + globin (a protein) Heme has iron in its molecule In the lungs: Blood red cells (hemoglobin + oxygen) = oxyHb. \Rightarrow tissues \Rightarrow carboxyHb. \Rightarrow lungs \Rightarrow oxyHb. Chronic loss of blood \Rightarrow **Iron deficiency anemia** (heavy periods, lack of iron intake by children). Treatment: Iron by mouth for 1 yr. Overdoses of Fe by mouth are not recommended is iron overload + peroxides \Rightarrow free radicals \Rightarrow DNA damage

MERCURY [Hydrargyrum (Hg)] (also Known as Quicksilver)

METALS Year of Discovery

- 6000 BC GOLD
- 4000 BC SILVER
- 4200 BC COPPER
- 3500 BC LEAD
- 1750 BC TIN
- 1500 BC IRON
- 750 BC MERCURY
- 1746 ZINC
- 1751 NICKEL
- 1753 BISMUTH
- 1755 MAGNESIUM
- 1757 PLATINUM

- 1781 MOLYBDENUM
- 1789 URANIUM
- 1791 TITANIUM
- 1797 CHROMIUM
- 1803 PALLADIUM
- 1808 CALCIUM
- 1817 LITHIUM
- 1817 CADMIUM
- 1827 ALUMINUM
- 1830 VANADIUM
- 1898 POLONIUM
- 1898 RADIUM

MERCURY

MERCURY

Only liquid metal at standard temperature. Heavy. Found in the mineral cinnabar (mercuric sulfide) red pigment - vermillion **Extremely rare.** Mines in Italy, USA, Mexico Does not blend with other metals. May be kept in iron containers. Concentrated in ores. Dissolves gold and silver Extremely toxic – uses declined b/o environmental **safety.** Water through abandoned mines \Rightarrow ecological danger. Minamata disease in Japan.

Cinnabar

Mercury – Timeline

Found in Egyptian tombs ~1500 BC 500 BC - Amalgams Used in Egypt, Greece, Rome as cosmetic Medieval Age Alchemists : Hg = "First matter" Widely used by alchemists to obtain gold 1558 – Mercury used in silver extraction by Spain in Peru 2005 - Mines in China \Rightarrow 2/3 of world producer using prison labor

Minamata Disease

1936-1968 - Industrial pollution of water with methyl -mercury in Minamata Bay.

Severe neuro-muscular symptoms.

2000+ affected, 2000 died.

Chisso Corp. (chemical industry) not cooperating with the investigation.

Paid financial compensations

Cause: Methyl-mercury released in water ⇒ poisoned

fish and shellfish ⇔ eaten by fishermen

1965 – Second Minamata disease in Niigata

Minamata Bay and Chisso Factory

Mercury - Uses

Dental filings – Amalgam with silver

Mercury-vapor lamps – electricity – Hg. vapor ⇒ S/W UV

light waves light ⇒ phosphor in tube ⇒ fluorescence

High temp. thermometers

Many medical uses have been **discontinued**:

- Thimerosal (vaccine preservative)
- Mercurochrome (topical antiseptic)
- Diuretics, anti-syphilis medications
- Glass thermometers
- Blood pressure cuffs

Dental Fillings

1. Dental amalgam fillings:

- Mercury 50%, silver, tin, and copper.
- 150 years experience,
- Solid, easily prepared, low cost.
- **2.** Resin Composite fillings:
 - 10 years experience,
 - Durable, cosmetic
 - Expensive

Dental Filing = Amalgam of Mercury and Silver

Mercury lamps

NICKEL (Ni)

NICKEL

Rare metal in Earth's crust Usually iron-nickel mixture Corrosion-resistant Used in alloys Necessary in industry, metallurgy

Nickel Production

Nickel Ore Reserves

CHROMIUM

Known to Chinese 3rd cent BC – Xi'an weapons without erosion because of chromium oxide coating of the bronze
Found in mineral crocoite (1761)
Extracted as iron chromate oxide
Resists tarnish

Chromium - Uses

Stainless steel and plating = 85% of commercial use Dye and pigment chrome yellow - aerospace

Diet - not sufficient information Chromium in drinking water: 25/35 cities = higher than the California proposed limits

Chromium World Production

ZINC (Zn) (from German "Zinke" = prong)
Andreas Sigismund Marggraf Discovered Zinc - 1746

Found as zinc ore *sphalerite* (zinc sulfide) Ores, associated with other metals (copper, lead) Large deposits: Iran, Australia, Canada, USA Refined zinc production increased 80% in 2009 Reserve lifetime is OK **Corrosive-resistant zinc plating of iron = galvanization** Important for humans "Exceptional biologic and public importance"

Zinc deficiency: Exercising, childhood growth, pregnancy, and diarrhea increase utilization

Zinc toxicity known

E. MORAN - 2017

Zinc - Timeline

Alloy with copper ⇒ Brass

- 3,000 BC Aegean islands, Mesopotamia, Caucasus
- 2,000 BC Persia, Mesopotamia, Judea, W. India

Pure zinc:

- 900 CE Rajasthan, India
- 1,300 CE India
- 1,600 CE Europe

Alloy of copper + zinc (zinc identified only in 1746)

1746 – Isolated and described by Margraf, a German chemist

1800 – Galvani & Volta discovered electrochemical

properties of Zn I Plating of iron = "galvanization"

Zinc Uses

Brass - Superior corrosion-resistant - More ductile and stronger than copper Many industrial and home appliances, musical instruments Various alloys, semiconductor (ZnO) white pigment Batteries - Luigi Galvani experiment and Volta's pile. - Plates of copper and zinc \Rightarrow static electricity Galvanization - Zinc coating iron to protect from rust **Dietary supplement -** Effect in prostate cancer (?) **Topical uses -** Calamine lotion

- Sickle cell disease skin ulcers

Zinc – Intake

Present in many body enzymes - 1940 - carbon anhydrase contains zinc Present in most organs; highest in prostate, eye, brain US IOM – Est. Ave. Requirements = 8-11 mg/day. RDA = 11 mg.Tolerable Upper Intake Level (UL) = 40 mg/day **Dietary intake:** Oysters, meat, fish, fowl, eggs, dairy, wheat (bran), seeds, beans, nuts, fortified cereals

Foods Containing Zinc

Zinc Deficiency

Deficiency – Malabsorption, chronic liver and kidney diseases, sickle cell disease, elderly, Low intake < RDA = 15 mg/day USA – Less than EAR: Women - 17%; Men -11% 2.2 Bil. people are deficient. 800,000 children dead/year **Symptoms:** Retarded growth of children, diarrhea, skin lesions, depression, cognitive and immune system impairment, anosmia

Zinc world production

MAGNESIUM (Mg)

MAGNESIUM

Name comes from *Magnesia*, in Greece Eighth most abundant element in Earth's crust Highly reactive – found in minerals Very important in industry Essential for life: human body and plants Important structural metal (3rd after iron and aluminum) Highly flammable, intense white light

Magnesium – Production

1618 – Farmer in Epsom, England, had water rich in Mg. which healed skin lesions

1808 – Isolated in England

China is greatest supplier (80% of world supplier)

Magnesium **Uses: Super-strong lightweight alloys: Aircraft -** (engine, airframe) Automotive (engine blocks, magwheels) **Electronics** Photography, printing **Batteries** Roofing Medicine - important electrolyte **Plants - chlorophyll**

Magnesium - Biomedicine

Essential to cell functions

>300 enzymes require magnesium ions 60% in the skeleton; **39% intracellular** RDA = **300 mg/day**; only 32% of US people meet the RDA **Sources:** Green leafy vegetables, cereals, nuts, spices Level maintained by GI absorption/loss, and kidney excretion Magnesium deficiency: Common life threatening intake, GI or kidney dysfunction, ↑ intracellular shift, antacids, alcoholism, diabetes Symptoms: Neuromuscular and cardiac dysfunction

Foods rich in magnesium

ALUMINUM (AI)

ALUMINUM

Third most abundant in the Earth's crust Chemically reactive ⇒ mostly in minerals Chief ore = **Bauxite** Found as oxides and silicates Feldspars are aluminosilicates Aluminum is corrosion-resistant Best known "strength-to-weight" alloy Essential for the aerospace industry, structures, building, transportation

Bauxite – A major aluminum ore

Aluminum - Uses

- **Transportation** (aircraft bodies)
- Packaging
- Containers (food, beverages)
- Construction
- Household items
- Electronic appliances
- Electrical transmission lines
- Cooking utensils
- Coins
- Metal instruments (guitar resonators, and electric
- guitar speakers

Aluminum - Economics

2005 – Major producers: China (1/5), Russia, Canada, USA
Recycling: Very active
Melting aluminum saves electrical energy
Aluminum recycling: 42% - 95% in Europe

World Production of Aluminum

Aluminum - Biomedical

No known function in biology Excessive use of antacids and antiperspirants ⇒ toxic effects – nervous system and bones No conclusive evidence on role in Alzheimer disease Exposure to powdered aluminum ⇒ pulmonary fibrosis

Aluminum absorption by human skin

SAPPHIRE

Gemstone variety of the mineral corundum (an aluminum oxide) Many colors: blue, yellow, purple, orange, grey, black, clear (white) Natural or synthetic Very hard (grade 9/10) Uses: Jewelry, ornaments, electronics **Producers:** Australia, Thailand, Sri Lanka, China, Madagascar, E. Africa, Montana

Uncut Rough Sapphire Spokane Sapphire Mine, Helena, MT

The Blue "Logan Sapphire" 423-carat (85g)

The Blue Sapphire

Synthetic Sapphire

Synthetic Star Sapphire

CALCIUM (Ca) from Lat. "calx-calcis" = lime

METALS Year of Discovery

- 6000 BC GOLD
- 4000 BC SILVER
- 4200 BC COPPER
- 3500 BC LEAD
- 1750 BC TIN
- 1500 BC IRON
- 750 BC MERCURY
- 1746 ZINC
- 1751 NICKEL
- 1753 BISMUTH
- 1755 MAGNESIUM
- 1757 PLATINUM

- 1781 MOLYBDENUM
- 1789 URANIUM
- 1791 TITANIUM
- 1797 CHROMIUM
- 1803 PALLADIUM
- 1808 CALCIUM
- 1817 LITHIUM
- 1817 CADMIUM
- 1827 ALUMINUM
- 1830 VANADIUM
- 1898 POLONIUM
- 1898 RADIUM

CALCIUM – NATURAL HISTORY

Earth metal, soft, grey. Very reactive - found only as compounds (salts of calcium)

Geochemical cycling:

- Calcium-rich rocks erosion ⇒
- Calcium released into surface water ⇒ Oceans ⇒
- Calcium reacts with dissolved CO₂ ⇒ Ca carbonate ⇒
- Limestone is formed

Essential to living organisms

Calcium Timeline and Uses

- 14,000 7,000 BC Used as lime plaster and statues
- 2,500 BC First lime kiln Mesopotamia
- 1st Cent. Romans prepared lime for buildings and statues
- 975 CE Plaster of Paris (Ca sulfate) to set broken bones
- 1808 CE Calcium isolated by Sir Humphry Davy
- Most abundant metal in many animals
- 2000 CE Large scale industry use of various salts

Some Calcium Uses

- Ca carbonate Lime
- Ca hydroxide for detecting presence of CO_2
- Ca arsenate insecticide
- Ca chloride ice removal, additive to canned tomatoes
- Ca citrate food preservative
- Ca hypochlorite swimming pool disinfectant
- Ca phosphate suppl. animal feed, fertilizer
- Ca sulfate (gypsum) blackboard chalk, Plaster of Paris

Green Calcite from Mexico

Red Calcite from China

Dolomite (white) + Magnesite (yellow) from Spain

Orange Mound Spring, Yellowstone

Travertine Terraces - Mammoth Hot Springs, Yellowstone National Park

Travertine terraces, Pamukkale, Turkey

Pamukkale, Turkey

Calcium - Biomedical

Necessary for life 99.9% of calcium is in the bones and teeth Necessary as a **neurotransmitter**, for **muscle** contraction, cardiac function, and normal blood clotting **Deficiency:** Rickets, osteoporosis, cardiac dysfunction, clotting abnormalities Vitamin D - necessary for calcium absorption and utilization Intake: Dairy products, nuts, some vegetables

Retention in blood = Medical emergency

Rickets and Osteoporosis

Diseases of calcium deficiency in the bones Calcium needs vitamin D to be absorbed. Vitamin D is activated in the skin from an inactive form If low CA ⇒ Skeletal deformities

Osteoporosis = imbalance btw. production and destruction of bone RDA for >70 y.o. = 1,200 mg

Foods that contain vitamin D include: butter, eggs, fish liver oils, margarine, fortified milk and juice, portabella and shiitake mushrooms, and oily fishes such as salmon, tuna, and herring.

MARBLE

Calcium carbonate sedimented in layers (foliation) Mostly calcite and dolomite (aka. limestone) Effect of water: holes and carving the stone ⇔ caves

Uses: Sculpture Construction

Carrara Marble

Foliation (layering) of Limestone

Limestone – Bridges and arches Piatra Craiului, Romania

Limestone Art

Carlsbad Caverns, NM

Carlsbad Caverns – "Rock of Ages" Photo Ansel Adams - 1941

The Great Pyramid of Giza. Outer layer (veneer) of limestone (Egypt – 2650 BC)

Venus of Milo - 400-500 BC (?) The Louvre Museum

The Nike of Samothrace Parian Marble (c. 220–190 BC) The Louvre Museum

Marble Door – Hagia Sophia – 537 CE

Travertine Vessels Mexico, 600-900 CE

Italian Renaissance – Statue of David by Michelangelo, 1504

Taj Mahal - Agra, India – 1648 CE

LITHIUM (Li)

LITHIUM

- 1817 Isolated from mineral **Petalite** (lithium-aluminum silicate)
- Lithium is present in ocean water, clays, briny waters
- Lightest and least dense metal
- Highly reactive and flammable stored in mineral oil
- 75% of production used in industry, batteries
- Found in grains and vegetables. RDA = 1 mg/day
- High content in embryo. Activity related to other biochemicals in the body
- Mood-stabilizing drugs Bipolar disorder in humans. Effect on bone marrow ⇔↑ in the white cell production

Lithium Floats in Oil

Launch of a Torpedo using Lithium as Fuel

World Production of Lithium

RECYCLING OF METALS

The world use of metals is higher than its production Mining activities are expanding 1932 - 1999 USA copper used/person 73g ⇔ 238g Lower energy for recycled metals

UN Intl. Resource Panel – Environmental Program:

- 60 metals recycling rates <50%
- 34 metals recycling rates <1%

Battery packs for hybrid cars, mobile phones are in jeopardy

E. MORAN - 2017

END OF LECTURE # 5