LECTURE #4

LYMPHATIC SYSTEM

CELL-MEDIATED IMMUNITY

<u>T-lymphocytes</u> (activated in the thymus) identify aggressors and try to destroy them through the production of <u>lymphokines</u> (synthesized proteins)

- Killer T-cells
- Helper T-cells
- Suppressor cells

HUMORAL IMMUNITY

<u>B-lymphocytes</u> (from the bone marrow) synthesize immunoglobulins which function as antibodies combining with foreign antigens (bacteria and viruses):

- IgG major immunoglobulin (80%)
- IgM mostly intravascular
- IgA in body secretions, GI and respiratory tract
- IgE active in hypersensitivity (allergy)

lgD

DISEASES OF THE LYMPHATIC SYSTEM

• Obstruction to the lymph flow ≻ Edema

Draining infected areas > Lymphadenitis

 <u>Cancer</u>: Lymphomas, Hodgkin's disease, Leukemia

DISEASES THAT COMPROMISE THE HOST DEFENCE MECHANISM

Hodgkin's disease

Lymphomas

Leukemias

Multiple myeloma

Carcinomas and sarcomas

Inherited or acquired primary immunodeficiency disease

LYMPH NODE STRUCTURE - SCHEMA

afferent lymph vessels

medullary sinusoids*

intermediary sinusoids

subcapsular sinusoids

efferent lymph vessels

lymph follicle

capsule

trabecula

PREFERENTIAL SITES OF CANCER SPREAD

LUNGS ➡ Lymph nodes, Adrenal glands, Bones, Liver, Brain

- BREAST ➡ Lymph glands, Lungs, Liver, Bones, Brain
- **PROSTATE** ⇒ Lymph glands, Spine, Bones, Lungs
- COLON ➡ Lymph glands, Liver, Lungs
- **BRAIN** Rarely to lymph nodes

Lymphatic Spread of Cancer

Intra-thoracic organs drain mostly to the right cervical and supraclavicular lymph nodes.

Intra-abdominal organs drain mostly to the left cervical and supraclavicular lymph nodes

ENLARGED GLANDS (LYMPHADENOPATHY)

Subjective: tender or painless **Objective:** Acute or chronic Local or general **Isolated or matted glands Differential diagnosis:** Chronic infections Cancer **Diagnosis:** Biopsy and pathologic examination No needle biopsy

Left cervical lymphadenopathy (Enlarged lymph nodes) – Chronic lymphatic leukemia (CLL)

Right Cervical (Neck) Enlarged Lymph Nodes - Lymphoma

Swollen glands – Hodgkin's disease

Burkitt's lymphoma

Relapse of "Testicular Cancer" On pathology review: Large cell lymphoma

Use of Gallium⁶⁷ scan in Hodgkin's disease

High-grade lymphoma involving the floor of the mouth

HIGH-GRADE LYMPHOMA OF THE LT. TONSIL

Liver scan with focal areas of involvement

Abdominal CT Scan of a Patient with Lymphoma

EVALUATION OF HODGKIN'S DISEASE AND LYMPHOMA

- **Physical examination**
- Laboratory profile
- CT or PET–CT scan
- Other tests as indicated by the presentation

LYMPHOMAS OTHER THAN HODGKIN'S DISEASE

Classified by their rate of proliferation:

- Low-grade
- Intermediate grade
- Hi-grade

TREATMENT OF LYMPHOMAS

Low-grade (Indolent) lymphomas:

- Observation
- Chemotherapy at time of progression +/-Radiation

High-grade (aggressive) lymphomas:

- Chemotherapy
- Bone marrow transplantation

Multiple myeloma: Chemotherapy + BMT

E. MORAN - 2015

CANCER of BLOOD FORMING

ORGANS

LEUKEMIA

Active (Normal) Bone Marrow

Active (Normal) Bone Marrow

NEUTROPHILIC LINEAGE

Stem Cell and Blood Cells

Blood film (smear) to show: Red blood cells, white blood cells (neutrophils), and a platelet

LIFETIME OF BLOOD CELLS

RBC 120 days WBC 8.5 -14 days Platelets ~ one week

Homeostasis of the White Blood Cells

Leukemia – Microscopic view of the bone marrow

ACUTE VS. CHRONIC LEUKEMIA

Clinically:

Acute leukemia: Acute course, with bleeding, infections

Chronic leukemia: Course is chronic - years

Microscopically:

Acute: Primitive bone marrow cells in the bone marrow and in the blood

Chronic: Relatively differentiated bone marrow cells in the blood

Table 1. A Classification of Acute Leukemia

Myelogenous Leukemia **Myeloblastic** Promyelocytic Myelomonocytic (and monocytic) Di Guglielmo syndrome Erythroleukemia **Erythremic Myelosis** 2. Lymphoblastic Leukemia 3. Undifferentiated Leukemia
LEUKEMIA BURDEN OF SUFFERING

US 2015 Est. new cases 54,270

Acute lymphocytic leukemia	6,250
Chronic lymphocytic leukemia	14,620
Acute myeloid leukemia	20,830
Chronic myeloid leukemia	6,660
Other leukemias	5,910

ACUTE LEUKEMIA ETIOLOGY

- Genetic factors
- Viral infection
- Radiation exposure
- Chemicals exposure

ACUTE LEUKEMIA - ETIOLOGY GENETIC FACTORS

Chromosome imbalance: Down's syndrome Other aneuploidies Chromosome breakage: Bloom's syndrome Fanconi's syndrome Ataxia telangiectasia Genetic "susceptibility": Familial (?) Coexistent neoplasm (?)

ACUTE LEUKEMIA ETIOLOGY VIRAL LEUKEMOGENESIS

In animals: Experimental evidence

In humans: Viruses and virus-like particles in leukemic cells and plasma of patients

- Are viruses bystanders?
- Are viruses co-carcinogens?
- Koch's postulate not fulfilled

ACUTE LEUKEMIA - ETIOLOGY RADIATION EXPOSURE

In the general population:

- Survivors of the atomic bomb explosions (Japan, 1945)
- Radiologists exposed to ionizing radiation

In patients treated for other diseases:

- Ankylosing spondylitis
- Thymus radiation in childhood
- Diagnostic tests: Unknown dose threshold

LEUKEMIA - SYMPTOMS

- Weakness, fatigue
- Recurrent infections
- Bleeding, gum bleeding
- Bone pain
- Anorexia

CHRONIC MYELOPROLIFERATIVE DISORDERS

Polycythemia rubra vera (P. vera) Chronic myeloid leukemia (CML or CGL) Agnogenic myeloid metaplasia (AMM) Essential thrombocythemia (ET) Myelodysplastic syndromes (MDS)

ACUTE VS. CHRONIC LEUKEMIA

Clinically:

Acute leukemia: Acute course, with bleeding, infections

Chronic leukemia: Course is chronic - years

Microscopically:

Acute: Primitive bone marrow cells with poor differentiation in the bone marrow and in the blood Chronic: Relatively differentiated bone marrow cells in the blood

A child with bleeding in the mouth mucosa had low platelets in the blood

Petechiae in Leukemia

View of the eye fundus showing multiple spot bleeding caused by low platelets in a patient with acute leukemia

Fig. 28-2. Retinal hemorrhages in a 19-year-old man with acute myelogenous leukemia. The white spots at the center of the hemorrhage are leukocytes.

BLEEDING INTO THE BRAIN IN LEUKEMIA B/O LOW PLATELETS

LEUKEMIA Treatment

Acute leukemia (lymphatic and myeloid):

Chemotherapy

Bone marrow transplantation

Chronic lymphatic leukemia: Chemotherapy

Chronic myeloid leukemia: Chemotherapy

BMT (?)

Polycythemia rubra vera: Phlebotomies

Chemotherapy

AIR POLLUTION AND CANCER

• Combustion of fossil fuels

• Smoking

• Asbestos

AIR POLLUTION BY COMBUSTION Epidemiologic Studies

Silesia (Poland) → PAH → genotoxic effects

Yunan (China) - lung cancer in women

Shanghai - lung cancer in non-smoking women

LUNG CANCER RISK FACTORS

• Active tobacco smoking (87%)

• Passive smoking

• Environmental factors (asbestos, metals)

Karolinska Institute:

- Protective effect of dietary vegetables, primarily carrots (RR=.07)
- Protective effect of non-citrus fruits

(RR=0.6)

African Americans

Cases = higher daily mean total fat intake (p<.001) Controls = higher daily mean fiber intake (p<.001) and fruits (p=.02)

Mexican Americans

- less total fat intake (p<.002)
- more fiber (p<.001)
- more vegetables (p=.08)

Independent of cigarette smoking, high fat consumption & low

fruit and vegetables contribute to the excess of lung cancer in African American men

Nutrition – Cancer Relationship The Evidence

Cancer Protective Agents

- Fruits
- Vegetables
- Foods with:
 - Lycopene
 - Selenium
 - Folate
 - Fiber

Cancer Prevention

WCRF & AICR Recommendations

- 1. Be as lean as possible (normal weight range).
- 2. Be physically active every day.
- 3. Limit foods that promote weight gain:
 - Limit intake of processed, energy dense foods.
 - Avoid sugary drinks.
 - Consume fast foods sparingly, if at all.

Cancer Prevention

WCRF & AICR Recommendations

Eat mostly plant foods.

 At least 5 servings of a variety of nonstarchy vegetables and of fruits every day.

 Eat unprocessed grains and/or legumes with every meal.

Limit refined starchy foods.

Cancer Prevention WCRF & AICR Recommendations Limit alcohol intake to Not more than: 2 drinks per day for men. 1 drink per day for women. 1 drink = 1 1/2 oz liquor, 5 oz wine, or 12 oz beer

Cancer Prevention WCRF & AICR Recommendations

- 8. Aim to meet nutritional needs through diet.
 - Dietary supplements are not recommended for cancer prevention.

CANCER SCREENING GUIDING PRINCIPLES

Burden of Suffering Risk Factors Family History (?) Effective Methods of Early Detection Results - reliability

Ideal Cancer Screening Method

- Inexpensive
- Safe
- Highly accurate
- Easy to use in community

LUNG CANCER SCREENING

 Intense counseling against tobacco smoking

 Routine screening is not recommended in asymptomatic patients

NLST: National Lung Screening Trial

September 2002 – February 2004 50,000 participants randomized Monitor through 2009

Low-dose fast spiral CT

NLST

- Population: 53,454 adults 55-74 y.o.
- Smoking history: > 2 pack/day for 30 pack/yrs.
- Method: Routine Chest X-ray vs. spiral CT three exams/year
- Duration of study: 2002 2010
- Results: published in 2011
- <u>20% reduction in mortality of the group given</u> <u>Spiral CT</u>

SYMPTOMS DURING COURSE OF DISEASE

	% INCIDENCE
COUGH	48-71
CHEST PAIN	28-50
DYSPNEA	23-42
HEMOPTYSIS	9-63
WEIGHT LOSS	31-49

*Data culled from 3 series (2404 patients)

Several histologic types each with specific:

- Growth
- Natural history
- Complications
- Response to treatment
- Survival

PROGNOSTIC FACTORS

EXTENT METASTATIC SITES PERFORMANCE STATUS WEIGHT LOSS CELL TYPE

Normal Chest X-ray

Chest CT Scan Showing Metastases

PET/CT scan Positron Emission Tomography/Computer Tomography

Jan 3rd 2009

Jan 31st 2009

LUNG CANCER TREATMENT

Surgery for curative intent Surgery for palliative intent Radiation therapy Systemic chemotherapy Intra-caviatry (intra-pleural) chemotherapy

LUNG CANCER SURGERY

Provided that PFT's are minimally OK:

Wedge resection

Segmental resection of small peripheral lesions.

Lobectomy

Pneumonectomy

LUNG CANCER: Localized or not?

LUNG CANCER RADIATION THERAPY

Effective as used alone or in combination with systemic chemotherapy Dose depends on the histologic type of the cancer New modalities showed increased effectiveness

NON-OAT CELL CARCINOMA CHEMOTHERAPY

Problems Related to Patient

- 1. Blood supply prior surgery - prior radiotherapy
- 2. Coexistent lung infection
- 3. Metabolic status
- 4. Treated vs. untreated

LUNG CANCER COMPLICATIONS

- Atelectasis (collapse of lung tissue)
- Infection > Bronchopneumonia
- **Pleural effusion**
- Metastases to brain, adrenals, bones, liver
- Paraneoplastic syndromes with metabolic alterations