CALIFORNIA STATE UNIVERSITY FULLERTON OSHER LIFE LEARNING INSTITUTE

CANCER

Causes, Prevention, Screening, Early Diagnosis, and Treatment"

Edgar M. Moran, M.D. Professor of Medicine, Emeritus University of California, Irvine

Why this new course?

- Educated people should know the true facts
- To understand the known causes of cancer
- To be able to prevent the disease
- To understand the diagnosis and treatment
- To empower ourselves through knowledge

WHY DID I GET INVOLVED WITH THIS COURSE?

- I like teaching
- I am committed to helping people understand their health problems
- I believe that it is the duty of physicians to help people know the facts and avoid false advertisement

DISCLAIMER AND CREDITS

Disclaimer: Nothing to declare

Credits:

- 1. Personal teaching and clinical files
- 2. Multiple Internet programs
- 3. Books and journals

PLAN OF COURSE

- Basic Biology and Organism Functions:

 a. Cell and tissues
 b. What is cancer and its causes
- 2. **Cancer Prevention and Cancer Screening**
- 3. Early Diagnosis
- 4. Cancer Treatment

LECTURE #1

CHARACTERISTICS OF LIFE (I)

Characteristics of life are traits that all <u>living</u> organisms share There are 11 characteristics of life that humans share with other organisms:

- 1. <u>Movement</u> Self-initiated change in position, motion of the internal organs
- <u>Responsiveness</u> Ability to sense changes within or around the organism and react to them
- 3. Growth Increase in body size
- 4. **<u>Reproduction</u>** Produce offspring ⇒ producing new

individuals

CHARACTERISTICS OF LIFE (II)

- 5. **Respiration** Obtaining oxygen and releasing CO₂
- 6. <u>Digestion</u> Chemically changing food substances, and getting rid of wastes
- 7. <u>Absorption</u> Passage of digested products through membranes and into body fluids
- 8. <u>Assimilation</u> Changing absorbed substances into chemically different substances
- 9. <u>Circulation</u> Movement of nutrients throughout the body

CHARACTERISTICS OF LIFE (III)

- 10. **Excretion** Removal of wastes
- 11. Metabolism –
- A. The acquisition of food
- B. Utilization of its energy
- C. Waste excretion

How are the characteristics of life dependent on metabolism?

 We need food and energy to be able to do all of the characteristics of life

MAINTENANCE OF LIFE: Requirements of Organisms (1) • Life requires certain environmental factors:

 Water - Most abundant compound in body, required for metabolic processes, transport of substances, and regulation of temperature

- 2. Foods Provide chemicals and water, used for energy, making new living matter, or regulating chemical reactions
- Oxygen Used to release energy from food substances which drives metabolic processes
- 4. Heat Form of energy, product of metabolic reactions

REQUIREMENTS OF ORGANISMS (2)

5. Pressure - Application of force to something helps humans breathe, also used inside body to push blood through blood vessels

- 6. Digestion Chemically changing food substances , and getting rid of wastes
- 7. Absorption Passage of digested products through membranes and into body fluids
- 8. Circulation Movement of substances throughout the body
- 9. Assimilation Changing absorbed substances into chemically different substances
- 10. Excretion Removal of wastes

HOMEOSTASIS

- Maintains an internal stable environment (water, nutrients, oxygen, and heat)
- The body does this with <u>homeostatic mechanisms</u> which are self-regulation control systems that have 3 components:
- Receptor provides info. about specific conditions (stimuli) in the internal environment
- 2. Set point tells what a particular value should be (temperature of body 98.6°F)
- **3. Effectors** causes responses that alters condition in the internal environment

HOMEOSTASIS FEEDBACK MECHANISMS

Phases

- Sensor mechanism senses disruption in homeostasis
- Control center
- Effector mechanism to restore homeostasis

Example

• High blood sugar

• Brain center

 Insulin > Normal blood sugar

The Cell

THE CELL

Nucleus: Contains the DNA (genetic material) **Cytoplasm:** Cell mass with organ-specific functions **Organelles: Mitochondria** – cell energy (ATP) **Ribosomes** – protein synthesis and fat metabolism **Golgi apparatus** – processes proteins **Endoplasmic reticulum** – transports proteins and lipids **Lysosomes** – digestive enzymes **Cell membrane** - Various constituents, biochemical and immunologic receptors

The Cell Cycle

Cell Division (Mitosis)

CELL DIVISION (MITOSIS)

Prophase: Nuclear membrane dissolves Nuclear DNA \succ Chromosomes. Each has a pair of chromatids connected to a centromere by a spindle of fibers **Metaphase:** Centromeres divide pulling the chromosomes apart **Anaphase:** Centromeres separate and chromosomes are puled toward opposite sides of the cell \geq 46 chromosomes on each side of the cell **Telophase:** New membrane around each set of 46 chromosomes., Spindle fibers disappear, cytoplasm divides. Two daughter cells

Tissues

Four types of tissue

From an Atom to a Man

ORGANIZATION OF THE HUMAN BODY

- Human organism is a complex structure composed of many
- parts
- It has several body cavities lined by membranes
- A variety of organ systems

ORGAN SYSTEMS (1)

- Body Covering:
 - Integumentary system
- Support and Movement:
 - Skeletal system; Joints and Muscular system
- Integration and Coordination:
 - <u>Nervous system; endocrine system</u> (hormones -secreting glands)
- Transport:
 - <u>Cardiovascular system; Lymphatic system</u>

ORGAN SYSTEMS (2)

- Absorption and Excretion:
 - <u>Digestive system; respiratory system; urinary</u> <u>system</u>
- Reproduction:
 - <u>Reproductive system</u>

Some Terms Used In These Lectures Mitosis = Cell (nucleus) divides. Four phases. **Metabolism** = Life-long biochemical processes Atrophy = Cells shrink (skin, brain) Hypertrophy = Cells increase its size (uterus in pregnancy) Hyperplasia = Cells multiply (trained muscle) **Dysplasia** = Changes due to chronic irritation (skin, bladder) **Degeneration** = Changes in cytoplasmic components (water, fats, pigment, calcium) Necrosis = Cell death

E. MORAN - 2018

TYPES OF CELL INJURY

Cell aging – natural event Toxic - endotoxic: diabetes, gout - exotoxic: Alcohol, CO, lead, medications Infections - viral, bacterial, protozoan, fungal Physical - wounds, thermal (U/V, radiation, electrical) **Deficit**: H₂O, O₂, nutrients, vitamins Vascular - Lack of blood supply

CELL AGING

A normal biological process, with individual variances in absence of pathologic events Skin and its glands and elastic tissue atrophy > dry skin and wrinkles Muscles atrophy, reduced muscle mass \forall strength Arteries lose their elastic tissue > hardening of their wall high blood pressure and decreased blood supply **Digestive glands** atrophy $\succ \forall$ secretions \succ impaired digestion and motility > constipation Nerve cells atrophy and death > mental dysfunctions

PROTECTIVE MECHANISMS

Natural:

- Skin and mucous membranes integrity
- Lysozymes
- <u>Cilia</u> (hair-like threads) in the nose and pulmonary airways
- <u>Blood</u> white blood cells (granulocytes and lymphocytes)
- Humoral: Antibodies

Acquired: Vaccinations

CELL INJURY - REACTION

- Exposure to injury
- Cell may adapt its structure and function
- Homeostasis is disturbed
- Cell degeneration ➤
- Cell death ➤
- Disease (occult) → Illness (signs & symptoms)

CAUSES OF DISEASES

Intrinsic: Age, gender, heredity, habits, lifestyle Diseases: Atherosclerosis, Diabetes mellitus, Cancer Extrinsic: Infections, accidents Environment Stress

DISEASE EVOLUTION

- 1. Exposure to injury
- 2. Incubation
- 3. Prodromal signs
- 4. Acute phase of signs and symptoms
- 5. Recovery
- 6. Convalescence
- 7. Healing (?)

ONSET, COURSE, AND RECOVERY

Acute disease – End point is healing

Chronic disease – No healing , Exacerbations

STRESS AND DISEASE

Stress: Physiologic or psychologic ➤ Alarm reaction – "flight-or-fight" ➤ Central nervous system and hormones activity ➤ End of Stress, homeostasis restored

If stress continues:

Coping mechanisms activated > Recovery

If no recovery:

Exhaustion of homeostasis > Onset of disease

Standing Tube of Whole Blood Smart.Com GetBodySmart.Com Smart.Com GetBodySmart.Com Smart.Com GetBodySmart.Com Smalplasma GetBodySmart.Com Smart.Com GetBodySmart.Com Smart.Com GetBodySmart.Com Smart.Com GetBodvSmart.Com -White Blood Cells & Platelets Smart.Com GetBodySmart.Com Red Blood Cells Smart.Com GetBodySmart.Com Smart.Com GetBodySmart.Com Smart.Com GetBodySmart.Com

GetB

BLOOD COMPONENTS

- Plasma
- <u>Cells:</u>
 - Red blood cells (RBC or erythrocytes)
 - White blood cells (WBC):
 - Granulocytes: neutrophils, eosinophils, basophils

•

- Lymphocytes
- Monocytes
- Platelets

CELLULAR BLOOD COMPONENTS

- **RBC** Carry Oxygen and CO₂
- WBC Various functions
 - Neutrophils Fight infections
 - Lymphocytes Active in immune responses
 - **Monocytes** Promote neutrophils
 - **Eosinophils** Active in allergy
- Platelets Essential in initiating blood clotting

Blood film (smear) to show: Red blood cells, white blood cells (neutrophils), and a platelet

Stem Cell and Blood Cells

White Blood Cells

LYMPHATIC SYSTEM

THE LYMPHATIC SYSTEM

- Intercellular space
- Lymphatic capillaries
- Lymphatic vessels (afferent and efferent)
- Lymph nodes, spleen (see the Immune System)
- Thoracic duct
- Blood
- Thymus
- Spleen

The Female Breast

The Spleen

E. MORAN - 2018

THE HOST DEFENCES

Physical barriers: Integrity of skin and mucous

membranes (lining of the GI and GU system), conjunctiva, nasal membranes

<u>Chemical barriers</u>: Lysozymes (antibacterial substances)

in tears, in the secretions of stomach, prostate, and vagina

THE INFLAMMATORY RESPONSE

The IMMUNE RESPONSE

THE INFLAMMATORY RESPONSE

Vascular and cellular changes in presence of a change in homeostasis (physical or chemical injuries, infections, foreign bodies)

- 1. Vasodilation ≻ redness, local warmth
- 2. WBC infiltration
- 3. Swelling \succ nerve irritation \succ
- 4. Pain

WOUND HEALING

A surgical cut is sutured:

- 1. Small amount of blood escapes from the blood vessels
- 2. Platelets from the blood arrest the bleeding
- 3. Blood clots on site
- 4. White blood cells and macrophages (scavenger cells) move to the site
- 5. Bacteria and any foreign matter are removed by these cells
- 6. Collagen is laid into the wound
- 7. Healing ensues in 10-14 days

THE IMMUNE SYSTEM

CELLULAR COMPONENTS OF THE IMMUNE SYSTEM

- Lymph nodes
- Spleen
- Thymus
- Tonsils and lymphatic tissue in the pharynx
- Lymphatic tissue in the GI tract

CELL-MEDIATED IMMUNITY

T-lymphocytes (activated in the thymus) identify aggressors and try to destroy them through the production of lymphokines (synthesized proteins)

- Killer T-cells
- Helper T-cells
- Suppressor cells

HUMORAL IMMUNITY

B-lymphocytes (from the bone marrow) synthesize immunoglobulins which function as **antibodies** combining with foreign **antigens** (bacteria and viruses):

- IgG major immunoglobulin (80%)
- IgM mostly intravascular
- IgA in body secretions, GI and respiratory tract
- IgE active in hypersensitivity (allergy)

lgD

DISEASES THAT COMPROMISE THE HOST DEFENCE MECHANISM

Hodgkin's disease

Lymphomas

Leukemias

Multiple myeloma

Carcinomas and sarcomas

Inherited or acquired primary immunodeficiency disease

E. MORAN - 2018

GENETICS – STUDY OF HEREDITY

- Human gametes: Ovum (ova) and Spermatozoa
- Genetic material: DNA
- Chromosomes: 46 chromosomes in all body cells
 - 23 chromosomes in ova and spermatozoa (meiosis)
 - 46 chromosomes in the fertilized egg
- Genes: Dominant genes and Recessive genes on sites of
- the chromosomes

GENES AND ALLELES

- Genes control the transmitted traits through the alleles
- Alleles are the variations of genes (eye color)

- Alleles may be **dominant** or **recessive**
- Dominant alleles transmit the heredity even if on one parental chromosome (heterozygous)
- Recessive alleles transmit only if homozygous (on both parental chromosomes)

CHROMOSOMES XX OR XY ?

23 pairs of chromosomes
21 are autosomes
2 are x-linked: XX = Female offspring
XY = Male offspring

MODES OF GENETIC INHERITANCE GENE ABNORMALITIES

Autosomal dominant - Produce abnormal traits in offspring even if <u>only one parent</u> has the gene.
 Autosomal recessive - Don't produce abnormal traits unless <u>both parents</u> have the gene.

X-linked dominant X-linked recessive

INTERMISSION

CANCER = Malignant Tumor = Malignant Neoplasm

A tissue growth:

- Not necessary for body's development or repair
- Invading healthy tissues
- Spreading to other sites of the body (metastasizing)
- Lethal because of its invasion, metabolism, and complications

Tissues

Four types of tissue

Connective tissue

Muscle tissue

Epithelial tissue

Nervous tissue

Cancer Terms to Know

<u>Origin</u>

- Epithelium (lining tissue)
- Glands
- Connective tissue
- Bones
- Muscles
- Brain tissue (glial cells)
- Lymphatic glands, spleen
- Blood cells

<u>Name</u>

- Carcinoma
- Adenocarcinoma
- Sarcoma
- Osteosarcoma
- Rhabdomyosarcoma
- Glioma
- Lymphoma
- Leukemia

BENIGN TUMORS

Benign tumors do not invade surrounding healthy tissues
Benign tumors do not spread out
Benign tumors may cause complications due to
obstruction of natural conduits [bronchi
(airways), intestine]
Terms: Adenoma, lipoma

Abnormal Karyotype of a Patient With Leukemia

E. MORAN - 2018

APOPTOSIS = PROGRAMMED CELL DEATH

A highly regulated and controlled cell death. It results in changes that include, cell shrinkage, nuclear breakage, chromatin and chromosomal breakage, and global messenger RNA decay.

Defective apoptotic processes have been implicated in a wide variety of diseases. An insufficient amount results in uncontrolled cell proliferation, such as **cancer**. Between 50 and 70 billion cells die each day due to apoptosis in the average human adult.

Phases of Apoptosis

E. MORAN - 2018

APOPTOSIS

E. MORA<u>N - 2018</u>

What Causes Cancer?

Artwork by Jeanne Kelly. © 2004.

Heredity and Cancer

All Breast Cancer Patients

Inherited factor(s)Other factor(s)

CANCER SUSCEPTIBILITY INTERINDIVIDUAL DIFFERENCES

Aryl Hydrocarbon Hydroxylase Inducibility

Debrisoquine Metabolic Phenotype

SPONTANEOUS MUTATIONS

OXYDATIVE DNA DAMAGE POLYMERASE INFIDELITY CHROMOSOMAL REARRANGEMENT RECOMBINASE INFIDELITY

Oncogenes

Normal cell

Mutated/damaged oncogene

E. MORAN - 2018

Tumor Suppressor Genes Act Like a Brake Pedal

p53 Tumor Suppressor Protein Triggers Cell Suicide

Normal cell

Excessive DNA damage

Cell suicide (Apoptosis)

Chances of Genomic Instability

Human Body Cells ~ 10¹⁴

Lifetime Cell Divisions ~ 10¹⁶

Chances of Mutation ~ 10¹²⁴

EVENTS IN CARCINOGENESIS

- METABOLIC ACTIVATION OF CARCINOGEN
 - Cytochrome P-450 enzymes
- PROTOONCOGENES ACTIVATION
 - Hepatocellular carcinoma c/w Aflatoxin B1 exposure
- LOSS OF TUMOR SUPPRESSOR GENES
 - p53 on chromosome 17
- LOSS OF ANTIMETASTASIS GENES

Cancer Risk and Aging

Known Factors Associated with Cancer Development^{*}

	%		%
Diet	30	Occupation	4
Smoking	30	Family History	2
Infection	10	Pollution	2
Sunlight	8	Food Additives	1
Alcohol	5	Industrial Products	1

* Modified from Doll, R. et al, 1981

Population - Based Studies

Heredity? Behavior? "Acculturation"?

CANCER IN CALIFORNIA ETHNIC FACTORS CHINESE FEMALES

SHANGHAI-BORN

S.F.-BORN

CERVIX	BREAST	BREAST
STOMACH	CERVIX	COLORECTAL
BREAST	COLORECTAL	CERVIX
LUNG	LUNG	OVARY
LIVER	STOMACH	LUNG

CANCER IN CALIFORNIA ETHNIC FACTORS

CHINESE MALES

SHANGHAI-BORN

S.F.-BORN

STOMACH	LUNG	LUNG
LUNG	COLORECTAL	PROSTATE
LIVER	LIVER	COLORECTAL
ESOPHAGUS	NASOPHARYNX	BLADDER
COLORECTAL	PROSTATE	PANCREAS

THE DAWN OF MOLECULAR EPIDEMIOLOGY OF HUMAN CANCER

"NO ONE SUPPOSES THAT ALL THE INDIVIDUALS OF THE SAME SPECIES ARE CAST IN THE VERY SAME MOLD"

C. Darwin, 1859

CARCINOGENESIS

The Beginning of Cancerous Growth

Tumors (Neoplasms)

Underlying tissue

E. MORAN - 2018

Invasion and Metastasis

1 Cancer cells invade surrounding tissues and blood vessels

> Cancer cells are transported by the circulatory system to distant sites

Cancer cells reinvade and grow at new location

Malignant versus Benign Tumors

Malignant (cancer) cells invade neighboring Benign (not cancer) tumor cells grow only locally and cannot spread by invasion or tissues, enter blood vessels, and metastasize to metastasis different sites 9696969696

Artwork by Jeanne Kelly. © 20

Maturation of Cancer Cells

Cancer may be formed by cells in various degrees of maturation ("differentiation"):

- Undifferentiated One cannot identify the tissue origin
- Moderately well differentiated Some features
- suggest a tissue origin
- Well differentiated One can identify a tissue origin and
- specific function (mucus secreting, keratin formation)

The degrees of cell differentiation correlate with the

- progression (undifferentiated are progressing fast)

- response to chemoradiation (undifferentiated

have a better response)

DEVELOPMENT OF A MALIGNANT TUMOR

Figure 1. Development of a tumor.

END OF LECTURE #1